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ABSTRACT

Engine noise reduction research currently underway in the NASA Advanced Subsonic Technology Noise Reduc-
tion Program is described. Emphasis is on noise reduction technology for high to ultra-high bypass ratio turbofan
engines which will dominate the airline fleets early in the 21st century. In terms of noise components, primary em-
phasis is on the fan with secondary effort on the jet for engines at the lower end of the bypass ratio range. The
approach to fan noise prediction consists of modeling the chain of physical processes beginning with flow distur-
bances on fan blades and ending with far field sound levels. For the jet, CFD solutions for the nozzle geometries are
coupled to combined aeroacoustic source/radiation models. On the experimental side, realistic models of fans,
nacelles, and nozzles are tested in aeroacoustic wind tunnels. Comparisons of predicted and measured noise levels
are presented as indicators of progress toward developing improved low-noise design tools. The challenges of apply-
ing active control concepts to turbofan noise are discussed including both cancellation and source modification
approaches.

INTRODUCTION

The Noise Reduction Program was initiated in 1993 as one element in the overall NASA Advanced Subsonic
Technology Program which is continuing through the end of the decade. The overall noise goal is to develop tech-
nology to enable the next generation of commercial aircraft to meet more stringent noise rules. Specific goals are to
reduce total aircraft noise 10 Effective Perceived Noise decibels (EPNdB), 6 EPNdB of which would be due to the
engine, and both with respect to 1992 technology. The three NASA aeronautics centers; Ames, Langley, and Lewis;
are working with industry and academia on the five program elements:  engine, nacelle, integration (including air-
frame), interior, and community impact. Lewis has prime responsibility for the engine. This paper gives a brief over-
view of recent Lewis led research efforts including contract, grant, and in-house work.

The engine cycles addressed include current products in the range of bypass ratio (BPR) 1.5 to 10, and ultra-high
BPR turbofans in the range 10 to 20 (ref. 1). As BPR is increased to 10 and beyond, the fan noise component be-
comes increasingly dominant in the total engine noise signature; and jet noise contributes less since core engine
exhaust velocity decreases as a progressively larger fraction of engine thrust is produced by the fan stream. In addi-
tion, fan diameter increases with BPR and thrust while, relative to diameter, shorter fan nacelles are required to limit
engine weight and nacelle drag. As a result, the length available for nacelle acoustic treatment L per unit passage
diameter D (or passage height between treated surfaces) becomes constrained to smaller values of L/D than current
practice. Therefore, more of the total fan noise reduction must be achieved by lowering the noise at the source
through such design features as swept rotor blades and stator vanes which are spaced two or more rotor chords apart.

FAN NOISE

For modern aircraft turbofans operating at subsonic rotor tip speeds (approach and takeoff with power cutback),
the dominant fan noise generation mechanism is rotor-stator interaction, i.e., flow disturbances created by an
upstream rotor interacting with stator vanes to produce both tone and broadband noise (ref. 2). Work to develop a
prediction/design system (refs. 3 and 4) emphasizes an approach which uses unsteady aerodynamic and aeroacoustic
analyses to lesson dependence on semi-empirical data correlations. Contours of computed fan inlet and aft sound
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pressure levels at blade passage frequency are shown superimposed on a fan cross-section in figure 1. The calcula-
tions begin by using a semi-empirical description of the rotor wakes as input to an unsteady aerodynamic gust
response model to compute stator blade surface unsteady pressures; the stator pressures are input to a mode coupling
analysis to give the amplitudes and phases of the annular duct modes; and the computed modes are input to a finite
element or finite difference propagation and radiation code which accounts for actual duct geometry and mean flow
to ultimately arrive at far field sound pressure levels. At present, the first generation tone model is complete; blade
row, inlet and nozzle coupling effects are being added (ref. 5); and fan broadband models are also under develop-
ment (ref. 6).

The relative importance of tone and broadband spectral components to total fan noise was studied in reference 7.
Figure 2 shows a summary of the results for a range of engine cycles having BPR’s from roughly 6 to 16 and corre-
sponding fan pressure ratios from 1.75 to 1.3. For each cycle, the EPNdB levels are shown for takeoff, cutback, side-
line, and approach conditions. By comparing the shaded bars which include the fan tones plus broadband with the
unshaded bars which have the first three tones removed, it can be seen that the broadband component must be re-
duced along with the tones if community noise reductions of more than a couple of EPNdB are to be achieved.
Broadband generation mechanisms are less well understood than tone mechanisms and are the subject of current
research.

Two kinds of fan noise experiments are conducted at Lewis. A model turbofan simulator is used to measure fan
noise in an anechoic wind tunnel which simulates flight conditions. Figure 3(a) shows a 22 in. diameter model of a
high BPR Advanced Ducted Propulsor model installed in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel,
which has acoustically treated walls making the test section anechoic above about 250 Hz. A series of these 22 in.-
diameter models are being used to investigate fan noise reduction concepts and scale the results to full size to
predict flyover noise levels. The scale factors range from about 1/6 for the largest engines (approx. 120-in.-diameter,
100 000 lb thrust) to nearly full scale for small turbofans (approx. 5000 lb thrust).

Another fan rig which has been used to study generation/radiation fundamentals and active fan noise control con-
cepts is shown in figure 3(b). This is a 4-ft diameter, low-speed fan (400 ft/sec tip speed) which is installed in the
Lewis Aeroacoustic Propulsion Laboratory (APL) (a 130-ft dia. hemispherical anechoic chamber). A cross-sectional
view of the fan is shown in figure 4. A unique rotating microphone rake which is synchronized to about 1/200 of the
fan rotational speed is used to obtain the magnitude and phase of the duct modes generated (ref. 8). The mode mea-
surements are also made on the 22-in. fans tested in the Wind Tunnel, and provide an intermediate check point be-
tween the generation and radiation processes when applying the noise prediction code.

When the generation theory described above is applied, results such as those shown in figure 5 are obtained. In
this case,the predicted fan tone directivities are in good agreement with measurements made on the large, low-speed
fan (ref. 9).

ACTIVE CONTROL

The large, low-speed fan is also used for active noise control experiments. Two approaches are being explored:
cancellation in the fan ducts after generation (ref. 10), and modification at the source, e.g., the stator vane surface
pressures (ref. 11). While the former involves controlling multiple sound sources mounted on the duct walls, the
latter uses controlled actuators mounted on the vane surfaces. A fundamental technical barrier to be overcome for
aircraft engine fan tone control is the fact that usually more than one higher order duct mode must be dealt with at
each tone, and their number increases with harmonic number. For broadband control, the multimode problem is
multiplied many fold.

JET NOISE

Reducing jet noise from turbofan engines inherently involves promoting mixing between the higher velocity core
and the lower velocity fan streams. For lower BPR engines with full length nacelles the mixing is promoted by a
lobed internal mixer upstream of a common exhaust nozzle (ref. 12). As described with regard to fan prediction, the
jet is also approached with fluid dynamic computations coupled to aeroacoustic analyses as a departure from semi-
empirical correlation. For the jet, the flow gradients and turbulence intensities in the jet plume are computed using a
Navier-Stokes code (ref. 13). This flow field information is used in an aeroacoustic calculation which includes con-
vective effects called the MGB code (ref. 14) to compute the far field radiation. The approach which uses Computa-
tional Fluid Dynamics as the starting point is currently under development. Sample results (ref. 15) for a splitter
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exhaust and a 12-lobed internal mixer nozzle are shown in figure 6 where the calculated directivities are compared
to measurements acquired on the model nozzles in the Lewis APL. Initial results are encouraging, but additional
refinement of the code is required.

SUMMARY

The engine noise reduction technology being developed in the NASA Noise Reduction Program has been briefly
reviewed. The program is directed toward realizing a 10 EPNdB reduction (6 EPNdb from the engine) in flyover
noise relative to 1992 certified levels. Both fan and jet components of engine noise are addressed. Development of
prediction/design codes emphasizes fluid dynamic and aeroacoustic descriptions which minimize dependence on
semi-empirical correlations.  Noise reduction approaches are tested with realistic model fans and nozzles in
aeroacoustic wind tunnels which simulate flight. Active control of fan noise is one example of advanced noise re-
duction technology being studied.
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Figure 1.—Predicted sound pressure level contours for advanced
   ducted propulsor at blade passage frequency, 16 blades, 22 vanes,
   12 000 rpm.
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Figure 2.—Fan tone (1,2,3 BPF) contribution to community noise levels

Figure 3.—Fan noise reduction experiments. (a) Model fan in Lewis
   9X15  Anechoic Wind Tunnel. (b) Large, low speed fan in Lewis
   Aeroacoustic Propulsion Facility.
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Figure 4.—Cross-sectional view of large, low speed fan for active noise
   control studies.
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Figure 5.—Comparison of predicted and measured fan tone directivities
   at blade passage frequency, ANC fan, 1886 rpm.
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Figure 6.—Comparison of predicted and measured jet overall sound
   pressure level directivities for confluent nozzle (splitter) and an
   internal 12 lobe mixer.  
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physical processes beginning with flow disturbances on fan blades and ending with far field sound levels. For the jet, CFD
solutions for the nozzle geometries are coupled to combined aeroacoustic source/radiation models. On the experimental side,
realistic models of fans, nacelles, and nozzles are tested in aeroacoustic wind tunnels. Comparisons of predicted and measured
noise levels are presented as indicators of progress toward developing improved low-noise design tools. The challenges of apply-
ing active control concepts to turbofan noise are discussed including both cancellation and source modification approaches.
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